
2025-10-03 16:24:09

1/8

Author: Fabrice Rochette, Verana Foundation

Audience: Newcomers with strong technical backgrounds (developers, architects, security

engineers, data scientists) who want a practical, conceptual, and implementation‑oriented

introduction to the technologies Verana builds on.

What you will learn:

What a Decentralized Identifier (DID) is, how DID Documents work, and why DIDs are

stronger identifiers than URLs for security‑sensitive systems.

How W3C Verifiable Credentials (VCs) work, the issuer–holder–verifier trust triangle, and

why VCs enable privacy‑preserving data sharing.

Why trust registries and decentralized trust networks are necessary, how they

interoperate, and how they enable sustainable, privacy‑preserving business models.

0) Problem Statement: Trust at Internet Scale

We want portable, verifiable trust between parties that don’t share a database or a single

identity provider. The Web’s default identifier (the URL) ties trust to DNS, certificate authorities,

and domain control—great for content addressing, fragile for entity addressing (people, orgs,

services, agents). We need identifiers that are cryptographically bound to controllers,

interoperable across ecosystems, and work offline. We need a way to attach verifiable claims

to those identifiers, prove them selectively, and check who’s authorized to issue/verify them.

That’s what DIDs + VCs + Trust Registries provide.

1) Decentralized Identifiers (DIDs)

A DID is a globally unique identifier (URI) whose ownership is proven cryptographically, not

by a central registry. Example:

did:web:example.com

1.1 DID Document (the metadata for a DID)

Resolving a DID returns a DID Document—a small JSON object describing public keys,

verification relationships, and endpoints controlled by the DID’s controller.

https://www.linkedin.com/in/fabricerochette/
https://verana.io/

2025-10-03 16:24:09

2/8

{

 "id": "did:example:123",

 "verificationMethod": [

 {

 "id": "#keys-1",

 "type": "JsonWebKey2020",

 "controller": "did:example:123",

 "publicKeyJwk": { "kty": "EC", "crv": "P-256", "x": "...", "y":
"..." }

 }

],

 "authentication": ["#keys-1"],

 "assertionMethod": ["#keys-1"],

 "service": [

 { "id": "#agent", "type": "DIDCommMessaging", "serviceEndpoint":
"https://agent.example.com" }

]

}

Why DIDs > URLs for identifying entities:

Self‑certifying control: Proof of control comes from possession of the private key

corresponding to keys in the DID Document, not just control of a domain or account.

Key agility: Rotate keys and add multiple keys/relations without changing the DID.

Transport agnostic: Works online/offline and across transports (HTTP, DIDComm,

Bluetooth, QR, NFC).

Method choice: Different DID methods (below) offer different root‑of‑trust models

(web, logs, ledgers, etc.).

Note: Anti‑correlation best practice is to use pairwise DIDs (a distinct DID per

relationship) where appropriate.

2) Examples of DID Methods You’ll Meet in Verana Ecosystems

A DID’s first path segment is its method (e.g., did:web:…). Methods define how DIDs are

created, resolved, and updated.

2.1 did:web — leverage DNS + HTTPS

How it works: Host a DID Document under a domain you control (e.g.,

https://example.com/.well-known/did.json).

Pros: Simple, deployable today, integrates well with existing web ops; good for

organizations and services.

Cons: Trust ultimately rooted in DNS and Web PKI; no built‑in verifiable key history.

When to use: Public‑facing services, developer portals, early integrations, discovery via

the web.

2.2 did:webvh — did:web + verifiable history

2025-10-03 16:24:09

3/8

Idea: Keep the operational convenience of did:web but add a verifiable key/event

history (e.g., using KERI‑style key event logs) so resolvers can audit control changes

over time.

Pros: Mitigates did:web’s weakest point: unverifiable history and key compromises;

maintains compatibility with web tooling.

Cons: More moving parts than plain did:web.

When to use: Enterprises and ecosystems needing web‑based identifiers with historical

accountability and stronger assurance.

2.3 did:webs — web‑anchored, cryptographically secured by event logs

Idea: A web‑discoverable DID whose trust is rooted in cryptographic key events (not

DNS/CA). Typically built on KERI key event receipts.

Pros: Stronger independence from DNS/CA operators; verifiable key rotation history.

Cons: Newer method; requires event‑log infra.

When to use: High‑assurance use cases that still want web discovery.

2.4 did:ebsi — DIDs in the European EBSI ecosystem

Idea: EBSI provides DID methods and registries for EU trust ecosystems (e.g., legal

entities). DID Documents are registered and governed per EU rules.

Pros: Alignment with EU trust lists, accreditation, and conformance tooling; clear

governance.

Cons: Tied to EU frameworks and onboarding processes.

When to use: Interop with EU public‑sector and EBSI‑compliant ecosystems.

Takeaway: did:web is the easiest on‑ramp; did:webvh/did:webs add provable key

history and stronger assurances; did:ebsi aligns you with EU trust frameworks.

3) W3C Verifiable Credentials (VCs)

A Verifiable Credential is a tamper‑evident package of claims that an issuer makes about a

subject (identified by a DID or other identifier). A Verifiable Presentation (VP) is a

holder‑curated bundle of one or more credentials/derived proofs presented to a verifier.

3.1 Anatomy (minimal JSON example)

2025-10-03 16:24:09

4/8

{

 "@context": ["https://www.w3.org/ns/credentials/v2"],
 "type": ["VerifiableCredential", "EmployeeCredential"],

 "issuer": "did:web:acme.example",
 "credentialSubject": {

 "id": "did:web:alice.example",

 "employeeId": "E-12345",

 "role": "Engineer"

 },

 "validFrom": "2025-01-01T00:00:00Z",

 "credentialStatus": {

 "type": "StatusList2021Entry",

 "statusPurpose": "revocation",

 "statusListIndex": "4242",

 "statusListCredential": "https://acme.example/status/employee-
2025.json"
 },

 "proof": { /* Data Integrity or JOSE/COSE proof */ }

}

3.2 The Trust Triangle

Issuer (e.g., a company, university) signs a VC.

Holder (person, org, service, or AI agent) stores it in a wallet/agent and creates a VP

when needed.

Verifier checks the cryptographic proof, the credential’s schema, its status, and whether

the issuer is authorized for that schema in the relevant trust registry.

3.3 Why VCs enable privacy‑preserving data sharing

2025-10-03 16:24:09

5/8

Selective disclosure: Share only the claims necessary (e.g., “age over 18”) using

cryptosuites like BBS+ or formats like SD‑JWT VC.

Unlinkability: Derived proofs prevent verifiers from correlating different presentations.

Pairwise identifiers: Use different DIDs per verifier to avoid cross‑domain correlation.

Revocation at scale: Status List credentials enable privacy‑preserving revocation

checks without calling home on each presentation.

3.4 Crypto options you’ll see

Data Integrity proofs (JSON‑LD; pluggable cryptosuites like BBS+ for selective

disclosure and predicates).

JOSE/COSE proofs (JWT/JWS, SD‑JWT, COSE) for familiar JOSE/CBOR stacks.

4) Trust Registries and Decentralized Trust Networks

4.1 What is a Trust Registry?

A Trust Registry (aka “trust list”) publishes authoritative mappings like:

Schemas: machine‑readable definitions of credential types.

Issuers: who is authorized to issue which schemas (under what accreditation).

Verifiers: who is authorized to request/verify which schemas (and for what purpose).

Policies & governance: links to the Ecosystem Governance Framework (EGF) that

defines rules, evidence, liability, and audit.

4.2 Why registries are necessary

Automatable trust decisions: Verifiers need to know, programmatically, whether an

issuer is legitimate for a credential type.

Interoperability: Common schemas + canonical issuer lists enable multi‑vendor,

multi‑jurisdiction networks.

Privacy‑preserving business models: Authorization checks occur against ecosystem

policy—not by centralizing user data. Users disclose minimal claims; verifiers check

issuer authorization against the registry.

4.3 Examples and patterns

EU/EBSI maintains Trusted Issuers and Trusted Schemas registries; credentials

reference status lists and schema URIs.

ToIP defines a Trust Registry Query Protocol (TRQP)—a simple, DNS‑like query API to

ask: “Does entity X hold authorization Y under governance Z?”

4.4 Decentralized Trust Networks

A decentralized trust network is a federation of agents, wallets, services, and registries

operating under one or more EGFs. Key properties:

2025-10-03 16:24:09

6/8

Composability: Multiple registries (schemas/issuers/verifiers) can interoperate;

cross‑network bridges answer queries across EGFs.

Layered trust: Global discovery → ecosystem policy → cryptographic verification →

privacy‑preserving presentation.

No data honeypots: Registries list who is trusted for what; they do not store end‑user

PII or presentations.

5) End‑to‑End Flow (Step‑by‑Step)

1. Identify entities with DIDs

Choose a method per assurance needs: did:web (simple), did:webvh/did:webs

(verifiable key history), did:ebsi (EU alignment). Publish DID Docs.

2. Define schemas

Model credential types using JSON Schema or JSON‑LD contexts. Register

schema URIs in the network’s Trusted Schemas Registry.

3. Governance

The ecosystem’s EGF defines roles, accreditation, audit, and dispute processes.

Issuers/verifiers are onboarded against the EGF.

4. Registry onboarding

Authorize issuers/verifiers for specific schemas and publish entries in Trust

Registries.

5. Issue credentials

Issuer signs VCs to subjects’ DIDs. Include credentialStatus (e.g., Status List

2021) and schema references.

6. Hold & manage

Wallets/agents store VCs, manage key material, rotate DIDs, and support pairwise

DIDs.

7. Present

Holder derives a Verifiable Presentation with selective disclosure/predicates;

binds presentation to the verifier (nonce/audience) to prevent replay.

8. Verify

Verifier checks: (a) proof and binding, (b) schema conformance, (c) credential

status, and (d) authorization of the issuer (and, if applicable, the verifier) via the

Trust Registry.

9. Log & comply

Record only what policy allows (e.g., attest outcome, not raw PII). Maintain

auditability without building correlation graphs.

6) Design Choices & Trade‑offs

did:web ↔ did:webvh/did:webs: operational simplicity vs. verifiable key history and

CA/DNS independence.

2025-10-03 16:24:09

7/8

Data Integrity vs. JOSE/COSE: JSON‑LD expressiveness and ZK‑friendly suites (e.g.,

BBS+) vs. JOSE/COSE familiarity and SD‑JWT VC adoption.

Single vs. multiple registries: Simplicity vs. separation of concerns (schemas, issuers,

verifiers) and cross‑ecosystem scaling.

Privacy posture: Prefer pairwise DIDs, status lists, and selective disclosure by default.

7) Why this stack is the future of the Internet

Portable trust: Credentials work across org and jurisdiction boundaries.

Composability: Mix methods, crypto suites, and governance without rewiring the Web.

Security: Self‑certifying identifiers, verifiable history, and hardware‑anchored keys.

Privacy by design: Minimal disclosure, unlinkability, pairwise identifiers, and revocation

at scale.

Market fit: Clear role separation (issuers/holders/verifiers) enables new business

models around authorization, not data brokerage.

8) Quick Reference

DID: Cryptographically controlled identifier with a resolvable metadata document.

DID Document: Lists keys, verification relationships, and service endpoints for the DID

controller.

VC: Signed set of claims about a subject; VP is a holder‑curated presentation.

Trust Registry: Authoritative list of schemas and who’s authorized to issue/verify them

under an EGF.

Decentralized Trust Network: An interoperable federation of wallets, agents, verifiers,

issuers, and registries under one or more EGFs.

9) Further Reading (high‑level)

W3C DID Core: https://www.w3.org/TR/did-core/

did:web method: https://w3c-ccg.github.io/did-method-web/

did:webvh background: https://identity.foundation/didwebvh/next/

did:webs spec: https://keri.one/did-webs

EBSI DID methods: https://ec.europa.eu/digital-strategy/our-policies/european-

blockchain-services-infrastructure

W3C Verifiable Credentials Data Model 2.0: https://www.w3.org/TR/vc-data-model-2.0/

W3C Data Integrity: https://www.w3.org/TR/vc-data-integrity/

VC JOSE/COSE: https://www.w3.org/TR/vc-jose-cose/

BBS+ cryptosuite: https://w3c-ccg.github.io/ldp-bbs2020/

SD-JWT VC draft: https://datatracker.ietf.org/doc/draft-ietf-oauth-sd-jwt-vc/

Status List 2021: https://www.w3.org/TR/vc-status-list/

ToIP TRQP spec: https://trustoverip.github.io/trust-registry-protocol/

EBSI Trusted Issuers Registry: https://ec.europa.eu/digital-strategy/our-policies/ebsi

EBSI Trusted Schemas Registry: https://ec.europa.eu/digital-strategy/our-policies/ebsi

https://www.w3.org/TR/did-core/
https://w3c-ccg.github.io/did-method-web/
https://identity.foundation/didwebvh/next/
https://keri.one/did-webs
https://ec.europa.eu/digital-strategy/our-policies/european-blockchain-services-infrastructure
https://www.w3.org/TR/vc-data-model-2.0/
https://www.w3.org/TR/vc-data-integrity/
https://www.w3.org/TR/vc-jose-cose/
https://w3c-ccg.github.io/ldp-bbs2020/
https://datatracker.ietf.org/doc/draft-ietf-oauth-sd-jwt-vc/
https://www.w3.org/TR/vc-status-list/
https://trustoverip.github.io/trust-registry-protocol/
https://ec.europa.eu/digital-strategy/our-policies/ebsi
https://ec.europa.eu/digital-strategy/our-policies/ebsi

2025-10-03 16:24:09

8/8

10) Appendix: Minimal Snippets

10.1 did:web location rule (example)

DID: did:web:example.com

DID Document URL: https://example.com/.well-known/did.json

10.2 Status List 2021 credential pointer (within a VC)

"credentialStatus": {

 "type": "StatusList2021Entry",

 "statusPurpose": "revocation",

 "statusListIndex": "4242",

 "statusListCredential": "https://issuer.example/status/employee-
2025.json"
}

10.3 Holder‑bound VP (sketch)

{

 "type": ["VerifiablePresentation"],

 "holder": "did:web:alice.example",

 "verifiableCredential": [/* derived proofs with selective
disclosure */],

 "proof": {

 "challenge": "d3f7b9...", // verifier’s nonce

 "domain": "login.service.example" // audience binding

 }

}

End of guide.

